KARMAŞIK SAYILAR  I. KARMAŞIK SAYILAR KÜMESİ Tanım
 Uyarı
   A. i NİN KUVVETLERİ       olmak üzere, i0 = 1 dir. i1 = i dir. i2 = –1 dir. i3 = i2 × i1 = (–1) × i = –i dir. i4 = i2 × i2 = (–1) × (–1) = 1 dir. i5 = i4 × i1 = 1 × i = i dir. Görüldüğü gibi i nin kuvvetleri ; 1, i, –1, –i değerlerinden birine eşit olmaktadır.  Sonuç
 Tanım
 Uyarı
  B. İKİ KARMAŞIK SAYININ EŞİTLİĞİ Reel kısımları ve imajiner kısımları kendi aralarında eşit olan iki karmaşık sayı birbirine eşittir. Kural
   C. KARMAŞIK SAYILARIN ANALİTİK DÜZLEMDE BELİRTİLMESİ Reel kısmı a, imajiner kısmı b olan karmaşık sayının; z = a + ib şeklindeki gösterimine karmaşık sayının standart (cebirsel) biçimi, Ox eksenine reel eksen, Oy eksenine de sanal (imajiner) eksen diyerek karmaşık sayıları gösterebileceğimiz karmaşık düzlemi elde ederiz. Karmaşık sayılarla karmaşık düzlemin noktaları bire bir eşlenebilir. z = a + bi karmaşık sayısının düzlemdeki görüntüsü (a, b) noktasıdır.   D. KARMAŞIK SAYININ EŞLENİĞİ
a + bi ve a + (–b)i karmaşık sayılarından birine diğerinin eşleniği denir. z karmaşık sayısının eşleniği Buna göre,         Kural
 Kural
  E. KARMAŞIK SAYILARIN MUTLAK DEĞERİ (MODÜLÜ) Karmaşık düzlemde, bir karmaşık sayıya karşılık gelen noktanın başlangıç noktasına (orijine) olan uzaklığına bu sayının mutlak değeri veya modülü denir. z karmaşık sayısının mutlak değeri |z| ile gösterilir.
  F. KARMAÅžIK SAYILARDA İŞLEMLER 1. Toplama İşlemi Karmaşık sayılar toplanırken, reel kısımlar kendi aralarında ve sanal kısımlar kendi aralarında toplanır. Buna göre, i2 = –1 olmak üzere,       karmaşık sayıları verilmiÅŸ olsun. Bu durumda,        2. Çıkarma İşlemi      z + (–w) = z – w olduÄŸuna göre, z sayısını w sayısının toplama iÅŸlemine göre tersi ile toplamak, z sayısından w sayısını çıkarmak demektir. Buna göre, z ile w nin farkı, reel kısımların birbiri ile sanal kısımların birbiri ile farkına eÅŸittir. Reel kısımların farkı, sonucun reel kısmını; sanal kısımların farkı, sonucun sanal kısmını verir. Buna göre, i2 = –1 olmak üzere,       karmaşık sayıları verilmiÅŸ olsun. Bu durumda        3. Çarpma İşlemi Karmaşık sayılarda çarpma iÅŸlemi, i2 = –1 olduÄŸu göz önüne alınarak, reel sayılardakine benzer ÅŸekilde yapılır. z = a + bi ve w = c + di  olsun. Buna göre, Â
Sonuç
 Kural
 4. Bölme İşlemi z1 × (z2)–1 sayısına z1 in z2 ye bölümü denir ve Karmaşık sayılarda bölme işlemi, pay ile paydanın, paydanın eşleniği ile genişletilmesiyle yapılır. Yani, z1 = a + bi ve z2 = c + di ise,  5. Eşlenik ve Mutlak Değerle İlgili Bazı Özellikler. z1 ve z2 birer karmaşık sayı olmak üzere,  G. KARMAŞIK DÜZLEMDE İKİ NOKTA ARASINDAKİ UZAKLIK z = a + bi ve w = c + di olsun.      |z – w| ifadesinin değeri z ile w sayısı arasındaki uzaklığa eşittir.        z sayısına karşılık gelen nokta A, w sayısına karşılık gelen nokta B olsun. Buna göre,  Kural
  II. KARMAŞIK SAYILARIN KUTUPSAL (TRİGONOMETRİK) GÖSTERİMİ i2 = –1 olmak üzere, z = a + bi olsun.       z nin karmaşık düzlemdeki görüntüsü M(a, b) noktasıdır. z karmaşık sayısını orijine birleştiren doğrunun reel eksenle (Ox ekseniyle) pozitif yönde yaptığı açıya, z karmaşık sayısının argümenti denir ve      arg(z) ile gösterilir.
Açının esas ölçüsü olan değere de Yukarıdaki şekilde, OHM dik üçgeninden,       yazılır. Buradan,  Sonuç
 Tanım
 Kural
 Kural
 Kural
 Sonuç
 Sonuç
 Kural
  A. ORİJİN ETRAFINDA DÖNDÜRME z = r × cisq karmaşık sayısının orijin etrafında pozitif yönde a kadar döndürülmesiyle elde edilen karmaşık sayı, v = r × cis(q + a) olur. Bu durum,      v = z × (cosa + isina) biçiminde de ifade edilebilir.  Uyarı
  B. BİR KARMAŞIK SAYININ KÖKLERİ
zn = u denklemini sağlayan z sayısına u sayısının n inci kuvvetten kökü denir.         Sonuç
 Kural
|
||||||||||||||||||||||||
 |
Â
lise3, lise 3 , 11.sınıf 11.sınıf, karmaşık, sayılar, karmaşıksayı, karmaşık sayı,mutlak değeri, eşleniği, eşdeniği, imajiner, kısımı,kutupsal , trigonometrik gösterimi, karmaşık düzlem işlemler, toplama, çıkarma, çarpma,bölme,  . çözümü, konuları, konusu,  matematik,  yazılı  hakkında ile, ilgili, ,bilgi, açıklama, nedir, nasıl, niçin, ne, ne zaman, yapılır, bilinir, bil, öğren,