Bir Garip MatematikC?

10.sınıf polinomlar yazılı konu anlatımı

İyi günler sevgili öğrenciler Öncelikle polinomlara çalışmaya başlamadan önce size tavsiyem 8.sınıfta gördüğünüz çarpanlara ayırma ve 9.sınıfta gördüğünüz fonksiyonlar konusunu tekrar etmeniz Çarpanlara ayırmayı olmazsa bile fonksiyonları kesinlikle çalışın işiniz daha kolay olur.

Çünkü polinomlar özel fonksiyon türleridir.

 

POLİNOMLAR


A. TANIM

n bir doğal sayı ve a0, a1, a2, ... , an – 1, an birer gerçel sayı olmak üzere,

P(x) = a0 + a1x + a2x2 + ... + an – 1xn – 1+anxn

biçimindeki ifadelere x değişkenine bağlı, gerçel (reel) katsayılı n. dereceden polinom (çok terimli) denir.


Bir fonksiyonun polinom olup olmadığı nasıl anlaşılır bulunur.Polinom nasıl anlaşılır nerden bilinir ?

Olay şu bilinmeyenin yani x lerin üstlerindeki sayılar doğal sayı olacak negatif yada kesirli olmayacak.

x Karekök içinde ise olmaz kuvvet şeklinde yazarsak kesirli olur.

x paydada yanlız ise yukarı çıkarınca kuvvet negatif olur negatif kuvvet ters çevirir özelliği.


  kuvvetler 0 dan başlıyor.



B. POLİNOMLARDA TEMEL KAVRAMLAR NEDİR

P(x) = a0 + a1x + a2x2 + ... + an – 1xn – 1+anxn

olmak üzere,

Ü a0, a1, a2, ... , an–1, an in her birine polinomun terimlerinin katsayıları denir.Yani bilinmeyenin önündeki sayı.

Ü a0, a1x, a2x2, ... , an–1xn – 1, anxn in her birine polinomun terimleri denir. (- ve + ile ayrılan herbir grup)

Ü Polinomun terimlerinden biri olan a2x2 teriminde x in kuvveti olan 2 ye bu terimin derecesi denir. (kuvvet en büyük üslü sayı.)



Ü Polinomu oluşturan terimler içerisinde derecesi en büyük olan terimin katsayısına polinomun baş katsayısı, bu terimin derecesine de polinomun derecesi denir ve

der [p(x)] ile gösterilir.

Ü Değişkene bağlı olmayan terime polinomun sabit terimi denir.

Ü a0 = a1 = a2 = ... = an = an–1 = 0 ise, P(x) polinomuna sıfır polinomu denir. Sıfır polinomunun derecesi tanımsızdır.

Ü a0 ¹ 0 ve a1 = a2 = a3 = ... an – 1 = an = 0 ise, P(x) polinomuna sabit polinom denir. Sabit polinomunun derecesi sıfırdır.


Her polinom bir fonksiyondur. Fakat her fonksiyon polinom olmayabilir.

Buna göre, fonksiyonlarda yapılan işlemler polinomlarda da yapılır.





C. ÇOK DEĞİŞKENLİ POLİNOMLAR NEDİR

P(x, y) = 3xy2 – 2x2y – x + 1

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun derecesi denir.



D. POLİNOMLARDA EŞİTLİK NEDİR

Aynı dereceli en az iki polinomun eşit dereceli terimlerinin katsayıları birbirine eşit ise bu polinomlara eşit polinomlar denir.



Ü P(x) polinomunun katsayıları toplamı P(1) dir.

Ü P(x) polinomunda sabit terim P(0) dır.




Herhangi bir polinomda; kat sayılar toplamı bulunurken o polinomda değişkenler yerine 1 yazılır. Sabit terim bulunurken o polinomda değişkenler yerine 0 (sıfır) yazılır.

P(ax + b) polinomunun; kat sayıları toplamı

P(a + b) ve sabit terimi P(b) dir.





Ü P(x) polinomunun;

Çift dereceli terimlerinin kat sayıları toplamı:'dır.


Tek dereceli terimlerinin kat sayıları toplamı:'dır.


E. POLİNOMLARDA İŞLEMLER NEDİR NASIL YAPILIR

1. Toplama ve Çıkarma

P(x) = anxn + an – 1xn – 1 + an – 2xn – 2 + ...

Q(x) = bnxn + bn – 1xn – 1 + bn – 2xn – 2 + ...

olmak üzere,



P(x) + Q(x) = (an + bn)xn + (an – 1 + bn–1)xn – 1 + ...

P(x) – Q(x) = (an – bn)xn + (an – 1 – bn–1)xn – 1 + ...

olur.



2. Çarpma

İki polinomun çarpımı, birisinin her bir teriminin diğerinin her bir terimi ile ayrı ayrı çarpımlarından elde edilen terimlerin toplamına eşittir.



3. Bölme (bu biraz zordur(

der [P(x)] ³ der [Q(x)] ve Q(x) ¹ 0 olmak üzere,


P(x) : Bölünen polinom

Q(x) : Bölen polinom

B(x) : Bölüm polinom

K(x) : Kalan polinomdur.



Ü P(x) = Q(x) . B(x) + K(x)

Ü der [K(x)] < der [Q(x)]

Ü K(x) = 0 ise, P(x) polinomu Q(x) polinomuna tam bölünür.

Ü der [P(x)] = der [Q(x)] + der [B(x)]



Polinomlarda bölme işlemi, sayılarda bölme işlemine benzer biçimde yapılır.

Bunun için;

1) Bölünen ve bölen polinomlar x in azalan kuvvetlerine göre sıralanır.

2) Bölünen polinom soldan ilk terimi, bölen polinomun ilk terimine bölünür.

3) Bulunan bu bölüm, bölen polinomun bütün terimleri ile çarpılarak, aynı dereceli terimler alt alta gelecek biçimde bölünen polinomun altına yazılır.

4) Bulunan sonuç, bölünen polinomdan çıkarılır. Fark polinomuna da aynı işlem uygulanır.

5) Yukarıdaki işlemlere, kalan polinomun derecesi bölen polinomun derecesinden küçük oluncaya kadar devam edilir.



F. KALAN POLİNOMUN BULUNMASI

Kalan polinomu, klasik bölme işlemiyle ya da aşağıdaki 3 yöntemden biri ile bulabiliriz.



1. Bölen Birinci Dereceden İse

Bir polinomun ax + b ile bölümünden kalanı bulmak için, polinomda değişken yerine yazılır.
P(x) in x – b ile bölümünden kalan P(b) dir.

• P(mx + n) nin ax + b ile bölümünden kalan



. Bölen Çarpanlara Ayrılıyorsa

Bölen çarpanlara ayrılıyorsa, her çarpan sıfıra eşitlenir. Bulunan kökler polinomda yazılarak kalan bulunur.

P(x) polinomunun a(x – b) . (x – c) ye bölümünden kalan mx + n ve bölüm polinom Q(x) ise,

P(x) = a(x – b) . (x – c) . Q(x) + mx + n olur.

P(b) = mb + n ... (1)

P(c) = mc + n ... (2)

(1) eşitliği ile (2) eşitliğinin ortak çözümünden m ve n bulunur.


Bölen polinomun derecesi n ise kalan polinomun derecesi en fazla (n – 1) dir.





3. Bölen Çarpanlarına Ayrılamıyorsa

Bölen çarpanlarına ayrılamıyorsa aşağıdaki 2 yöntem sırasıyla uygulanarak kalan polinom bulunur.

1) Bölen polinom sıfıra eşitlenerek en büyük dereceli değişkenin eşiti bulunur.

2) Bulunan ifade bölünen polinomda yazılır.

• P(x) polinomunun ax2 + bx + c ile bölümünden kalanı bulmak için P(x) polinomunda x2 yerine yazılır.



4. P(x) Polinomu (ax + b)n İle Tam Bölünüyorsa, (n Î N+, n > 1)


......................

......................

......................



P'(x) : P(x) polinomunun 1. türevidir.)




P(x) = axn + bxm + d ise,

Pı(x) = a . nxn–1 + b . mxm–1 + 0

Pıı(x) = a . n . (n – 1)xn–2 + b . m(m –1).xm–2 dir.






P(x) polinomunun (x – a) ile bölümünden elde edilen bölüm Q(x) ve kalan k1, Q(x) polinomunun (x – b) ile bölümünden kalan k2 ise,

P(x) in (x – a) (x – b) ile bölümünden kalan

K(x) = (x – a) k2 + k1 olur.





G. BASİT KESİRLERE AYIRMA

a, b, c, d, e, f A, B birer reel (gerçel) sayı olmak üzere,



eşitliğinde A yı bulmak için, A nın paydasının kökü bulunur.


eşitliğinde A yı bulmak için, A nın paydasının kökü bulunur.


Bulunan bu değer eşitliğin sol yanında A nın paydası atılarak elde edilen de yazılır.



Aynı işlemler B için de yapılır. Buna göre,


. DERECE İLE İLGİLİ İŞLEMLER

m > n olmak üzere,

der[P(x)] = m

der[Q(x)] = n olsun.

Buna göre,

1) der[P(x) ± Q(x)] = m dir.

2) der[P(x) . Q(x)] = m + n dir.

3) P(x) in Q(x) ile bölümünden elde edilen bölüm polinomu B(x) ise, der[B(x)] = m – n dir.

4) k Î N+ için der[Pk(x)] = k . m dir.

5) der[P(kx)] = m, k ¹ 0 dır.

 

 

10.sınıf, 10sınıf , 10 sınıf, çarpanlara ayırma, özellikleri, özellik, , formülü, formülleri,   yazılı Konu, anlatımı, hakkında ,bilgi, açıklama,ödev, performans,  örnek, nedir, nasıl, niçin, ne, ne zaman, yapılır, bilinir, bil, öğren,

Yorumlar   

 
Polinomlar
#17 Polinomlar 11-10-2014 21:10
polinomlar.com adresinde detaylı bir şekilde anlatılmış
Alıntı
 
 
fatma erdoğan
-1 #16 fatma erdoğan 20-11-2013 14:37
Bilenler bilmeyenlere öğretsin. Lafı :-(
Alıntı
 
 
isimliqral
-3 #15 isimliqral 18-11-2013 20:03
bu konu çok kolay zaten
Alıntı
 
 
cevap
#14 cevap 19-10-2013 09:03
Alıntılandı nursena:
polinomlar ve fonksiyonlar arasındaki farkların neler olduğunu bulamadımm :/ yardımcı olursanız sevinirim..

fonksiyomlar 1. derece ise polinomlar 2. derecedir
Alıntı
 
 
hidayet
+15 #13 hidayet 15-07-2013 09:18
Böyle bi konuyu ilk defa gördüğümüz için zor olabilirmi?! Hiçbişey anlamadım bu ne ya
Alıntı
 
 
melek
#12 melek 14-03-2013 13:13
yıllık ödev için daha uzunu gerekiyor
Alıntı
 
 
edanur
-25 #11 edanur 21-02-2013 17:20
çok beğendim bu konu çok kolay zaten
Alıntı
 
 
nursena
#10 nursena 06-01-2013 13:44
polinomlar ve fonksiyonlar arasındaki farkların neler olduğunu bulamadımm :/ yardımcı olursanız sevinirim..
Alıntı
 
 
sorgusuz melek
+6 #9 sorgusuz melek 12-12-2012 19:14
bnce konu anlatımı güzel ama bilmeyen arkadaşlar için zor gelebilir.yazar ak çalışırlarsa daha iyi anlayabilirler gerçekten işe yarıyo tavsiye ederim arkadaşlar eğitim öğretim gören arkadaşlara derslerinde başarılar dilerim :)))
Alıntı
 
 
ebru
-8 #8 ebru 08-11-2012 20:13
yarn snav var ben bittm :((
Alıntı
 
 
coşkun yılmaz
+24 #7 coşkun yılmaz 08-11-2012 17:12
10 senelik öğrenciyim ben böyle konu görmedim.
Alıntı
 
 
OFYAA
+6 #6 OFYAA 07-11-2012 16:15
YARIN SINAVIM VAR HİÇ BİŞEY BİLMİYOM ADIMI YAZIP ÇIKACAM
Alıntı
 
 
esra
-8 #5 esra 06-11-2012 19:58
anlatınız kesinlikle cok samimi ve güzel megınıze saglık dıyorum tesekkurler :)
Alıntı
 
 
esra
+1 #4 esra 06-11-2012 19:57
kesinlikle katılıyorum. isimsizkrala benimde temelden zayıf ve yarın kesinlikle 0 alıyorum 10 soru klasık yanı kagıda ne yazsam puan verır cunku soruları kesınlıkle cozemıyorum :/ YArın sınav var offf :( Bence sizin anlatımınız cok guzel acık ve net yanı cok begendım ama anlamayınca olmuyo ıste dedıgınıze de cok katılıyorum ama ıs ısten gectı sınav yarın kagıda ne yazsam en azından 10 puan verır hoca? :D sınırden guluyorum ha en azından 0 olmasın orası
Alıntı
 
 
aslı
-13 #3 aslı 29-10-2012 17:00
Yazarak çalışmak herzaman iyidir
Alıntı
 
 
isimsizqral
-11 #2 isimsizqral 15-10-2012 19:39
benim temel zayıf ama uğraşarak bir şeyler yapmaya çalışıyorum 2 hafta sonra sınav var off:(
Alıntı
 
 
mert yılmaz
+23 #1 mert yılmaz 11-10-2012 17:41
bu konulardan bir sey anlamadım ben anlayan warmı ?

Cevap(Admin): Polinomlar temeli zayıf öğrenciler için çok zor bir konudur. Okuyarak öğrenmeleri zordur. Bilen birinden destek almaları şart.
Alıntı
 

Yorum ekle

Güvenlik kodu
Yenile